

QUASIMEME

Quality assurance of information for marine environmental monitoring

Certificate of Analysis

Metals in seawater

REFERENCE MATERIAL

AQ3 sample 192

Certificate of Analysis AQ3 192

General Information

In this report an overview is given of analytical data for this sample collected in our proficiency testing program. The consensus values are calculated using a robust statistical model. With this NDA model, the mean and standard deviation are calculated using all reported data when at least 4 results are left after removal of reported 'lower than' (<) and 0 (= zero) values. No outliers are removed.

This report is divided into two sections: Consensus Values and Indicative Values. The division is made on the reliability of the data. Consensus Values are based on at least 8 results and a maximum relative uncertainty of 6.25%. Indicative Values are based on a maximum relative uncertainty of 35% and a minimum of 4 and maximum of 7 results, or a relative uncertainty greater than 6.25% when there are at least 8 results.

For each determinand the following parameters are given: mean, standard deviation, coefficient of variation, number of results, median, MAD (Median of Absolute Deviation), the uncertainty of the mean (consensus or indicative) value and the relative uncertainty.

Sample information

QUASIMEME reference materials cover a range of natural SeaWater species from contaminated waters from the North Sea and/or Mediterranean.

This AQ3 sample 192 of Low salinity seawater spiked with metals (high) from North Sea (diluted), Netherlands is prepared for the QUASIMEME proficiency programs. The results on which the values in this report are based were taken from the periods given in the following table.

Year.Round	Program	Sample
	_	Round Id
2024.2	AQ3	QTM370SW

Method: Metals - AQ3

motifical motals /tgs									
Element Copper	Unit	Mean 240	Std.Dev. 21.1	CV % 8.8	N 20	Median 240	MAD 14.2	Uncertainty 5.89	Rel.Uncert. % 2.45
	μg/l								
Cadmium	μg/l	7.09	0.725	10.2	17	7.20	0.440	0.220	3.10
Lead	μg/l	772	60.2	7.8	17	787	39.5	18.2	2.36
Cobalt	μg/l	49.4	2.06	4.2	12	49.3	1.60	0.743	1.51
Iron	μg/l	199	22.9	11.5	14	199	20.2	7.66	3.84
Manganese	μg/l	234	21.7	9.3	13	234	14.0	7.54	3.22
Arsenic	μg/l	198	16.0	8.1	16	200	8.00	5.01	2.53
Chromium	μg/l	156	8.81	5.7	17	156	6.00	2.67	1.72
Nickel	μg/l	661	40.3	6.1	18	665	26.1	11.9	1.80
Zinc	μg/l	553	38.4	6.9	18	555	25.0	11.3	2.05
Silver	μg/l	39.3	2.34	6.0	12	39.1	1.28	0.845	2.15
Boron	μg/l	1303	214	16.4	11	1349	149	80.6	6.19
Vanadium	μg/l	296	19.7	6.7	14	295	9.39	6.59	2.23
Tin	μg/l	137	21.6	15.8	11	141	8.80	8.15	5.95
Thallium	μg/l	78.1	7.93	10.2	8	78.0	2.85	3.51	4.49
Uranium	μg/l	16.9	0.911	5.4	9	17.0	0.400	0.380	2.24
Magnesium	mg/l	354	11.1	3.1	11	355	6.00	4.17	1.18
Strontium	mg/l	2.16	0.233	10.8	13	2.27	0.226	0.081	3.74