QUASIMEME

Quality assurance of information for marine environmental monitoring

Certificate of Analysis

Metals in seawater

REFERENCE MATERIAL
AQ3 sample 184

Certificate of Analysis
 AQ3 184

General Information

In this report an overview is given of analytical data for this sample collected in our proficiency testing program. The consensus values are calculated using a robust statistical model. With this NDA model mean and standard deviation are calculated using all reported data when at least 4 results are left after removal of reported 'lower than' (<) and 0 (= zero) values. No outliers are removed.

This report is divided into two sections: Consensus Values and Indicative Values. The division is made on the reliability of the data. Consensus Values are based on at least 10 results while the relative uncertainty is smaller than 6.25%. Indicative Values are based on a relative uncertainty of maximum 35% with at least 4 and less than 10 results or a relative uncertainty higher than 6.25%.

For each determinand the following parameters are given: mean, standard deviation, coefficient of variation, number of results, median, MAD (Median of Absolute Deviation) and the uncertainty in the assigned value. The confidence limits (at 95% probabilty) are calculated for these determinands.

Sample information

QUASIMEME reference materials cover a range of natural SeaWater species from contaminated waters from the North Sea and/or Mediterranean.

This AQ3 sample 184 of Low sal. Seawater spiked with high conc. Metals from North Sea (diluted) is prepared for the QUASIMEME proficiency programs. The results on which the values in this report are based were taken from the periods given in the following table.

Year.Round	Program	Sample Round Id
2023.2	AQ3	QTM354SW

Method: Metals - AQ3											
Element	Unit	Mean	Std.Dev.	CV \%	N	Median	MAD	Uncertainty	95 \% co	de	limits
Copper	$\mu \mathrm{g} / \mathrm{l}$	119	12.0	10.1	15	120	9.0	3.9	112	-	126
Cadmium	$\mu \mathrm{g} / \mathrm{l}$	15.5	1.29	8.3	15	15.7	0.77	0.42	14.8	-	16.2
Lead	$\mu \mathrm{g} / \mathrm{l}$	219	23.0	10.5	15	220	13.6	7.4	206	-	231
Iron	$\mu \mathrm{g} / \mathrm{l}$	162	9.9	6.1	10	163	4.7	3.9	155	-	169
Manganese	$\mu \mathrm{g} / \mathrm{l}$	204	14.1	6.9	10	202	8.0	5.6	194	-	214
Arsenic	$\mu \mathrm{g} / \mathrm{l}$	144	11.6	8.1	12	142	6.3	4.2	137	-	151
Chromium	$\mu \mathrm{g} / \mathrm{l}$	233	14.4	6.2	13	232	7.9	5.0	224	-	241
Nickel	$\mu \mathrm{g} / \mathrm{l}$	549	40.1	7.3	13	560	22.4	13.9	525	-	573
Zinc	$\mu \mathrm{g} / \mathrm{l}$	322	32.3	10.0	13	314	16.0	11.2	302	-	341
Vanadium	$\mu \mathrm{g} / \mathrm{l}$	271	16.2	6.0	10	270	9.2	6.4	259	-	282

Method: Metals - AQ3

Element	Unit
Cobalt	$\mu \mathrm{g} / \mathrm{l}$
Silver	$\mu \mathrm{g} / \mathrm{l}$
Boron	$\mu \mathrm{g} / \mathrm{l}$
Tin	$\mu \mathrm{g} / \mathrm{l}$
Thallium	$\mu \mathrm{g} / \mathrm{l}$
Uranium	mg / l
Magnesium	mg / l

Indicative Values AQ3

it	Mean	Std.Dev.	CV \%	N
$\mu \mathrm{g} / /$	73.8	3.02	4.1	8
$\mu \mathrm{~g} / \mathrm{/}$	15.1	3.07	20.3	7
$\mu \mathrm{~g} / \mathrm{l}$	1608	34.2	2.1	6
$\mu \mathrm{~g} / \mathrm{l}$	68.8	3.49	5.1	7
$\mu \mathrm{~g} / \mathrm{l}$	2.94	0.366	12.5	6
$\mu \mathrm{~g} / \mathrm{l}$	-	-	-	5
mg / l	452	17.8	3.9	7
mg / l	2.66	0.190	7.1	7

