AQ-5 Halogenated Organics in Seawater									
Year	2021	Number of Rounds / Year	1	1 Number of Materials					
Distribution		April (12 laboratories expected)							
Participation fee		€550,=							

Introduction

This study covers the determination of halogenated organics in seawater test materials.

Test Materials

The seawater for this study is collected from the Eastern Atlantic Ocean and is filtered to remove bacteria and particles. The low salinity test material is prepared by dilution with ultra-pure demineralised water. The test materials are thoroughly mixed and dispensed into 1 litre glass bottles. The participants are asked to dilute the supplied standard solutions using the supplied seawater test materials to produce the spiked test materials. Homogeneity of the test materials is assumed, as they are spiked to the same concentration level. The test materials are stable for the purposes of the exercise.

Determinands and Concentration Ranges

The organochlorines to be determined are given in the table below. The table also shows:

- The expected concentration range for the determinands in the spiked test materials.
- The constant and proportional error that will be used for assessment of the results. Where available the AA-EQS (EU-WFD) is given.

		Concentration Range		Error		AA-EQS
Determinand	Unit	Low Salinity Seawater (spiked)	Seawater (spiked)	Const	Prop	
α-HCH	ng/L	2—50	0.2—20	0.2	12.5%	2
β-НСН	ng/L	1—50	0.2-20	0.2	12.5%	2
γ-HCH	ng/L	2—50	0.5-20	0.2	12.5%	2
δ-HCH	ng/L	1—50	0.2-20	0.2	12.5%	2
HCB	ng/L	0.5—20	0.1-10	0.2	12.5%	10
HCBD	ng/L	2—50	0.2—20	0.2	12.5%	100
Aldrin	ng/L	2—200	1—20	0.5	12.5%	5
Dieldrin	ng/L	2—100	1—20	0.5	12.5%	5
Endrin	ng/L	2—200	1—20	0.5	12.5%	5
Isodrin	ng/L	2—200	1—20	0.5	12.5%	5
pp'-DDD	ng/L	1—50	0.1-10	0.5	12.5%	25
pp'-DDE	ng/L	1—50	0.2—10	0.5	12.5%	25
op'-DDT	ng/L	1—50	0.2—20	0.5	12.5%	25
pp'-DDT	ng/L	1—50	0.2—20	0.5	12.5%	10
Endosulphan-I	ng/L	1—20	0.2—10	0.2	12.5%	0.5
Endosulphan-II	ng/L	0.5—20	0.1—10	0.2	12.5%	0.5
Pentachlorobenzene	ng/L	2—100	0.2—5	0.5	12.5%	0.7
1,2,3-TCB	ng/L	2—50	1—20	0.5	12.5%	400
1,2,4-TCB	ng/L	5—100	1—20	0.5	12.5%	400
1,3,5-TCB	ng/L	2—50	0.5—20	0.5	12.5%	400
Trifluralin	ng/L	2—50	0.5—20	0.5	12.5%	30
PCB28	ng/L	2 - 50	0.5 - 20	0.2	12.5%	
PCB31	ng/L	2 - 50	0.5 - 20	0.2	12.5%	
PCB52	ng/L	2 - 50	0.5 - 20	0.2	12.5%	
PCB101	ng/L	2 - 50	0.5 - 20	0.2	12.5%	
PCB105	ng/L	2 - 50	0.5 - 20	0.2	12.5%	
PCB118	ng/L	2 - 50	0.5 - 20	0.2	12.5%	
PCB138	ng/L	2 - 50	0.5 - 20	0.2	12.5%	
PCB138+PCB163	ng/L	2 - 50	0.5 - 20	0.2	12.5%	
PCB153	ng/L	2 - 50	0.5 - 20	0.2	12.5%	
PCB156	ng/L	2 - 50	0.5 - 20	0.2	12.5%	
PCB180	ng/L	2 - 50	0.5 - 20	0.2	12.5%	

AA-EQS for HCH's is indicated as the sum for those determinands.

AA-EQS for aldrin, dieldrin, endrin and isodrin is indicated as the sum for those determinands.

AA-EQS for pp'-DDD, pp'-DDE and op'-DDT is indicated as the sum for those determinands and pp'-DDT.

AA-EQS for 1,2,3-TCB, 1,2,4-TCB and 1,3,5-TCB is indicated as the sum for those determinands.

AA-EQS for Endosulphan-I and II are indicated as the sum of both isomers.

These determinands are not in the scope of the accreditation.